Exam 3
 Sections 3.5-3.7 and 7.1-7.5

Name: \qquad

Do not write your name on any other page. Answer the following questions. Answers without proper evidence of knowledge will not be given credit.

Show your work!

$\mathbf{1}$ (10 points) Use the method of undetermined coefficients to find the general form of the particular solution for the differential equation

$$
y^{(4)}-5 y^{\prime \prime}+4 y=e^{x}-x e^{2 x}
$$

(Do not solve for the undetermined coefficients.)
2. (10 points) Use whatever method you desire to solve the initial value problem

$$
x^{\prime \prime}+x=\sin 2 t ; x(0)=0=x^{\prime}(0) .
$$

3. (5 points) Find the inverse Laplace transform for the function $F(s)=\frac{5 s+2}{s^{2}+9}$.
4. (5 points) Find the inverse Laplace transform for the function $F(s)=\frac{2 s+1}{s^{2}+6 s+13}$.
5. (10 points) Use the fact that $\mathcal{L}\{t f(t)\}=-\frac{d}{d s}(F(s))$ to solve for $X(s)$ in the differential equation

$$
t x^{\prime \prime}+(3 t-1) x^{\prime}+3 x=0 ; \quad x(0)=0
$$

6. (10 points) Consider an RLC circuit with $R=100$ ohms, $L=0$ henries, $C=10^{-3}$ farads and $e(t)=100 t$ if $0 \leq t<1$ and $e(t)=0$ if $t \geq 1$ volts at time t. Use the facts that $\mathcal{L}\{u(t-a) f(t-a)\}=$ $e^{-a s} F(s)$ and $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a)$, where $\mathcal{L}\{f(t)\}=F(s)$, to solve the resulting differential equation:

$$
100 i^{\prime \prime}+1000 i=e^{\prime}(t) ; i(0)=i^{\prime}(0)=0
$$

for the current $I(t)$ (in amperes).

